
OpenMandriva’s switch to
clang

Linux Plumbers Conference 2014,
LLVM Microconference

Bernhard “Bero” Rosenkränzer, OpenMandriva
bero@lindev.ch

For those unfamiliar with OMLx

OpenMandriva Lx is a Linux distribution
primarily for desktop users.

Released versions run on x86_64 and i586,
experimental builds exist for armv7hl and
aarch64.

For those unfamiliar with OMLx

After the 2014.1 release, we’ve decided to
make clang our default compiler.

rpm is now configured to default to clang,
/usr/bin/cc is a symlink to clang, /usr/bin/c++ is
a symlink to clang++

We also switched the default linker to gold.

Why make that change?

gcc is good -- but comparing gcc today (4.9) to
gcc 3 years ago (4.6) and clang today (3.5) to
clang 3 years ago (2.9) shows much bigger
improvements on the clang side (probably
because its code is more readable).

Keep up the pace!

Why make that change?

switching the default doesn’t mean throwing
gcc away, we keep packaging it and we can
and do fall back to
CC=gcc CXX=g++ ./configure …
where it makes sense.

Overall experience

The transition was quite smooth - a mass build
resulted in around 800 build failures due to
compiler changes. Not more than we usually
see with a major gcc update. (And only 1
compiler crash!)

However...

Blame the compiler...
“That thing is pure crap. It can’t even compile hello world.
configure tells me ‘C compiler cannot create executables’”.

-- Complaint by someone trying to rebuild packages… after
doing
export CFLAGS=”-O3 -frecord-gcc-switches” in
~/.profile

Real issues: gcc extensions

Most failures are caused by code relying on gcc
extensions:
● Nested functions (elfutils, rpm)
● Variable-length arrays in structs (kernel)
● __builtin_va_arg_pack (various libcs)

Real issues: Bugs ignored by gcc

class A {
 friend b(int, const char *s=0);
};

(default parameter given in friend declaration)
Seen in FLTK.

Real issues: Bugs ignored by gcc

class A {
 enum { a, b, c, d };
};
int main(int argc, char **argv) {
 return A::a;
} Seen in FLTK.

Very current gcc complains about this as well.

Real issues: Bugs ignored by gcc
void something(char n[30]) {

 if(!memcmp(buffer, n, sizeof(n))) {

 …

 }

}

Real issues: inline semantics
/usr/bin/ld: error: ../mpi/.libs/libmpi.a(mpi-bit.o):
multiple definition of '_gcry_mpih_add'
/usr/bin/ld: ../mpi/.libs/libmpi.a(mpi-add.o):
previous definition here

Caused by code assuming C89 inline
semantics -- fix: -std=gnu89

Real issues: to be debugged

X.Org drivers built with clang crash on X
startup. For now, we’re using CC=gcc there.

Two patches to clang itself...

Clang's __GNUC__ and __GNUC_MINOR__
macros identify it as gcc 4.2 -- but in fact it is
much closer to 4.9.

Only drawback: glibc assumes gcc 4.9 has
__builtin_va_arg_pack -- but glibc headers can
be patched

Two patches to clang itself...

Not quite standardized triplets: armv7hl-
linux-gnueabi vs. armv7l-linux-
gnueabihf
OpenMandriva used to use armv7hl-linux-
gnueabi (Red Hat and a few others still do) -
clang didn’t recognize this as a hardfloat target

Upstreaming

Most patches to make things work with clang
are accepted upstream, with a few notable
exceptions (elfutils etc.)

We may need to create a central repository to
collect those patches for other distributions
making the switch.

What else?

What else can we do to make switching to
clang even more painless?

